
CS229 Supplemental Lecture notes

John Duchi

1 Binary classification

In binary classification problems, the target y can take on at only two
values. In this set of notes, we show how to model this problem by letting
y ∈ {−1,+1}, where we say that y is a 1 if the example is a member of the
positive class and y = −1 if the example is a member of the negative class.
We assume, as usual, that we have input features x ∈ R

n.
As in our standard approach to supervised learning problems, we first

pick a representation for our hypothesis class (what we are trying to learn),
and after that we pick a loss function that we will minimize. In binary
classification problems, it is often convenient to use a hypothesis class of the
form hθ(x) = θTx, and, when presented with a new example x, we classify it
as positive or negative depending on the sign of θTx, that is, our predicted
label is

sign(hθ(x)) = sign(θTx) where sign(t) =











1 if t > 0

0 if t = 0

−1 if t < 0.

In a binary classification problem, then, the hypothesis hθ with parameter
vector θ classifies a particular example (x, y) correctly if

sign(θTx) = y or equivalently yθTx > 0. (1)

The quantity yθTx in expression (1) is a very important quantity in binary
classification, important enough that we call the value

yxT θ

the margin for the example (x, y). Often, though not always, one interprets
the value hθ(x) = xT θ as a measure of the confidence that the parameter

1



vector θ assigns to labels for the point x: if xT θ is very negative (or very
positive), then we more strongly believe the label y is negative (or positive).

Now that we have chosen a representation for our data, we must choose a
loss function. Intuitively, we would like to choose some loss function so that
for our training data {(x(i), y(i))}mi=1, the θ chosen makes the margin y(i)θTx(i)

very large for each training example. Let us fix a hypothetical example (x, y),
let z = yxT θ denote the margin, and let ϕ : R → R be the loss function—that
is, the loss for the example (x, y) with margin z = yxT θ is ϕ(z) = ϕ(yxT θ).
For any particular loss function, the empirical risk that we minimize is then

J(θ) =
1

m

m
∑

i=1

ϕ(y(i)θTx(i)). (2)

Consider our desired behavior: we wish to have y(i)θTx(i) positive for each
training example i = 1, . . . ,m, and we should penalize those θ for which
y(i)θTx(i) < 0 frequently in the training data. Thus, an intuitive choice for
our loss would be one with ϕ(z) small if z > 0 (the margin is positive), while
ϕ(z) is large if z < 0 (the margin is negative). Perhaps the most natural
such loss is the zero-one loss, given by

ϕzo(z) =

{

1 if z ≤ 0

0 if z > 0.

In this case, the risk J(θ) is simply the average number of mistakes—misclassifications—
the parameter θ makes on the training data. Unfortunately, the loss ϕzo is
discontinuous, non-convex (why this matters is a bit beyond the scope of
the course), and perhaps even more vexingly, NP-hard to minimize. So we
prefer to choose losses that have the shape given in Figure 1. That is, we
will essentially always use losses that satisfy

ϕ(z) → 0 as z → ∞, while ϕ(z) → ∞ as z → −∞.

As a few different examples, here are three loss functions that we will see
either now or later in the class, all of which are commonly used in machine
learning.

(i) The logistic loss uses

ϕlogistic(z) = log(1 + e−z)

2



ϕ

z = yxT θ

Figure 1: The rough shape of loss we desire: the loss is convex and continuous,
and tends to zero as the margin z = yxT θ → ∞.

(ii) The hinge loss uses

ϕhinge(z) = [1− z]+ = max{1− z, 0}

(iii) The exponential loss uses

ϕexp(z) = e−z.

In Figure 2, we plot each of these losses against the margin z = yxT θ,
noting that each goes to zero as the margin grows, and each tends to +∞ as
the margin becomes negative. The different loss functions lead to different
machine learning procedures; in particular, the logistic loss ϕlogistic is logistic
regression, the hinge loss ϕhinge gives rise to so-called support vector machines,
and the exponential loss gives rise to the classical version of boosting, both
of which we will explore in more depth later in the class.

2 Logistic regression

With this general background in place, we now we give a complementary
view of logistic regression to that in Andrew Ng’s lecture notes. When we

3



ϕlogistic

ϕhinge

ϕexp

z = yxT θ

Figure 2: The three margin-based loss functions logistic loss, hinge loss, and
exponential loss.

use binary labels y ∈ {−1, 1}, it is possible to write logistic regression more
compactly. In particular, we use the logistic loss

ϕlogistic(yx
T θ) = log

(

1 + exp(−yxT θ)
)

,

and the logistic regression algorithm corresponds to choosing θ that mini-
mizes

J(θ) =
1

m

m
∑

i=1

ϕlogistic(y
(i)θTx(i)) =

1

m

m
∑

i=1

log
(

1 + exp(−y(i)θTx(i))
)

. (3)

Roughly, we hope that choosing θ to minimize the average logistic loss will
yield a θ for which y(i)θTx(i) > 0 for most (or even all!) of the training
examples.

2.1 Probabilistic intrepretation

Similar to the linear regression (least-squares) case, it is possible to give a
probabilistic interpretation of logistic regression. To do this, we define the

4



-5 5
0

1

Figure 3: Sigmoid function

sigmoid function (also often called the logistic function)

g(z) =
1

1 + e−z
,

which is plotted in Fig. 3. In particular, the sigmoid function satisfies

g(z) + g(−z) =
1

1 + e−z
+

1

1 + ez
=

ez

1 + ez
+

1

1 + ez
= 1,

so we can use it to define a probability model for binary classification. In
particular, for y ∈ {−1, 1}, we define the logistic model for classification as

p(Y = y | x; θ) = g(yxT θ) =
1

1 + e−yxT θ
. (4)

For intepretation, we see that if the margin yxT θ is large—bigger than, say,
5 or so—then p(Y = y | x; θ) = g(yxT θ) ≈ 1, that is, we assign nearly
probability 1 to the event that the label is y. Conversely, if yxT θ is quite
negative, then p(Y = y | x; θ) ≈ 0.

By redefining our hypothesis class as

hθ(x) = g(θTx) =
1

1 + e−θT x
,

5



then we see that the likelihood of the training data is

L(θ) =
m
∏

i=1

p(Y = y(i) | x(i); θ) =
m
∏

i=1

hθ(y
(i)x(i)),

and the log-likelihood is precisely

ℓ(θ) =
m
∑

i=1

log hθ(y
(i)x(i)) = −

m
∑

i=1

log
(

1 + e−y(i)θT x(i)
)

= −mJ(θ),

where J(θ) is exactly the logistic regression risk from Eq. (3). That is,
maximum likelihood in the logistic model (4) is the same as minimizing the
average logistic loss, and we arrive at logistic regression again.

2.2 Gradient descent methods

The final part of logistic regression is to actually fit the model. As is usually
the case, we consider gradient-descent-based procedures for performing this
minimization. With that in mind, we now show how to take derivatives of
the logistic loss. For ϕlogistic(z) = log(1 + e−z), we have the one-dimensional
derivative

d

dz
ϕlogistic(z) = ϕ′

logistic(z) =
1

1 + e−z
·
d

dz
e−z = −

e−z

1 + e−z
= −

1

1 + ez
= −g(−z),

where g is the sigmoid function. Then we apply the chain rule to find that
for a single training example (x, y), we have

∂

∂θk
ϕlogistic(yx

T θ) = −g(−yxT θ)
∂

∂θk
(yxT θ) = −g(−yxT θ)yxk.

Thus, a stochastic gradient procedure for minimization of J(θ) iteratively
performs the following for iterations t = 1, 2, . . ., where αt is a stepsize at
time t:

1. Choose an example i ∈ {1, . . . ,m} uniformly at random

2. Perform the gradient update

θ(t+1) = θ(t) − αt · ∇θϕlogistic(y
(i)x(i)T θ(t))

= θ(t) + αtg(−y(i)x(i)T θ(t))y(i)x(i) = θ(t) + αthθ(t)(−y(i)x(i))y(i)x(i).

6



This update is intuitive: if our current hypothesis hθ(t) assigns probability
close to 1 for the incorrect label −y(i), then we try to reduce the loss by
moving θ in the direction of y(i)x(i). Conversely, if our current hypothesis
hθ(t) assigns probability close to 0 for the incorrect label −y(i), the update
essentially does nothing.

7


