
CS229 Problem Set #3 1

CS 229 Autumn 2017
Problem Set #3: Deep Learning & Unsupervised
learning

Due Wednesday, Nov 15 at 11:59 pm on Gradescope.

Notes: (1) These questions require thought, but do not require long answers. Please be concise
where possible. (2) If you have a question about this homework, we encourage you to post your
question on our Piazza forum, at https://piazza.com/stanford/fall2017/cs229. (3) If you
missed the first lecture or are unfamiliar with the collaboration or honor code policy, please read
the policy on Handout #1 (available from the course website) before starting work. (4) For
problems that require programming, please include in your submission a printout of your code
(with comments) and any figures that you are asked to plot.

Remember to tag all question parts in Gradescope to avoid docked points. If you are skipping a
question, please include it on your PDF/photo, but leave the question blank and tag it appropri-
ately on Gradescope. This includes extra credit problems. If you are scanning your document by
cellphone, please see https://gradescope.com/help#help-center-item-student-scanning

for suggested practices.

CS229 Problem Set #3 2

1. [20 points] A Simple Neural Network

Let X = {x(1), · · · , x(m)} be a dataset of m samples with 2 features, i.e x(i) ∈ R2. The
samples are classified into 2 categories with labels y(i) ∈ {0, 1}. A scatter plot of the
dataset is shown in Figure 1:

x1

0 0.5 1 1.5 2 2.5 3 3.5 4

x
2

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 1: Plot of dataset X.

The examples in class 1 are marked as as “×” and examples in class 0 are marked as
“◦”. We want to perform binary classification using a simple neural network with the
architecture shown in Figure 1:

Inputs Hidden layer

Output

Figure 2: Architecture for our simple neural network.

Denote the two features x1 and x2, the three neurons in the hidden layer h1, h2, and h3,

and the output neuron as o. Let the weight from xi to hj be w
[1]
i,j for i ∈ {1, 2}, j ∈ {1, 2, 3},

and the weight from hj to o be w
[2]
j . Finally, denote the intercept weight for hj as w

[1]
0,j ,

and the intercept weight for o as w
[2]
0 . For the loss function, we’ll use average squared loss

instead of the usual negative log-likelihood:

l =
1

m

m∑
i=1

(o(i) − y(i))2,

where o(i) is the result of the output neuron for example i.

CS229 Problem Set #3 3

(a) [5 points] Suppose we use the sigmoid function as the activation function for h1, h2, h3
and o. What is the gradient descent update to w

[1]
1,2, assuming we use a learning rate

of α? Your answer should be written in terms of x(i), o(i), y(i), and the weights.

(b) [10 points] Now, suppose instead of using the sigmoid function for the activation
function for h1, h2, h3 and o, we instead used the step function f(x), defined as

f(x) =

{
1, x ≥ 0

0, x < 0

What is one set of weights that would allow the neural network to classify this dataset
with 100% accuracy? Please specify a value for the weights in the order given below
and explain your reasoning.

w
[1]
0,1 =?, w

[1]
1,1 =?, w

[1]
2,1 =?

w
[1]
0,2 =?, w

[1]
1,2 =?, w

[1]
2,2 =?

w
[1]
0,3 =?, w

[1]
1,3 =?, w

[1]
2,3 =?

w
[2]
0 =?, w

[2]
1 =?, w

[2]
2 =?, w

[2]
3 =?

Hint: There are three sides to a triangle, and there are three neurons in the hidden
layer.

(c) [5 points] Let the activation functions for h1, h2, h3 be the linear function f(x) = x
and the activation function for o be the same step function as before. Is there a
specific set of weights that will make the loss 0? If yes, please explicitly state a value
for every weight. If not, please explain your reasoning.

CS229 Problem Set #3 4

2. [15 points] EM for MAP estimation

The EM algorithm that we talked about in class was for solving a maximum likelihood
estimation problem in which we wished to maximize

m∏
i=1

p(x(i); θ) =

m∏
i=1

∑
z(i)

p(x(i), z(i); θ),

where the z(i)’s were latent random variables. Suppose we are working in a Bayesian
framework, and wanted to find the MAP estimate of the parameters θ by maximizing(

m∏
i=1

p(x(i)|θ)

)
p(θ) =

(
m∏
i=1

∑
z(i)

p(x(i), z(i)|θ)

)
p(θ).

Here, p(θ) is our prior on the parameters. Generalize the EM algorithm to work for MAP
estimation. You may assume that log p(x, z|θ) and log p(θ) are both concave in θ, so
that the M-step is tractable if it requires only maximizing a linear combination of these
quantities. (This roughly corresponds to assuming that MAP estimation is tractable when
x, z is fully observed, just like in the frequentist case where we considered examples in
which maximum likelihood estimation was easy if x, z was fully observed.)

Make sure your M-step is tractable, and also prove that
∏m
i=1 p(x

(i)|θ)p(θ) (viewed as a
function of θ) monotonically increases with each iteration of your algorithm.

CS229 Problem Set #3 5

3. [25 points] EM application

Consider the following problem. There are P papers submitted to a machine learning
conference. Each of R reviewers reads each paper, and gives it a score indicating how good
he/she thought that paper was. We let x(pr) denote the score that reviewer r gave to paper
p. A high score means the reviewer liked the paper, and represents a recommendation from
that reviewer that it be accepted for the conference. A low score means the reviewer did
not like the paper.

We imagine that each paper has some “intrinsic,” true value that we denote by µp, where a
large value means it’s a good paper. Each reviewer is trying to estimate, based on reading
the paper, what µp is; the score reported x(pr) is then reviewer r’s guess of µp.

However, some reviewers are just generally inclined to think all papers are good and tend
to give all papers high scores; other reviewers may be particularly nasty and tend to give
low scores to everything. (Similarly, different reviewers may have different amounts of
variance in the way they review papers, making some reviewers more consistent/reliable
than others.) We let νr denote the “bias” of reviewer r. A reviewer with bias νr is one
whose scores generally tend to be νr higher than they should be.

All sorts of different random factors influence the reviewing process, and hence we will use
a model that incorporates several sources of noise. Specifically, we assume that reviewers’
scores are generated by a random process given as follows:

y(pr) ∼ N (µp, σ
2
p),

z(pr) ∼ N (νr, τ
2
r),

x(pr)|y(pr), z(pr) ∼ N (y(pr) + z(pr), σ2).

The variables y(pr) and z(pr) are independent; the variables (x, y, z) for different paper-
reviewer pairs are also jointly independent. Also, we only ever observe the x(pr)’s; thus,
the y(pr)’s and z(pr)’s are all latent random variables.

We would like to estimate the parameters µp, σ
2
p, νr, τ

2
r . If we obtain good estimates of

the papers’ “intrinsic values” µp, these can then be used to make acceptance/rejection
decisions for the conference.

We will estimate the parameters by maximizing the marginal likelihood of the data {x(pr); p =
1, . . . , P, r = 1, . . . , R}. This problem has latent variables y(pr) and z(pr), and the max-
imum likelihood problem cannot be solved in closed form. So, we will use EM. Your
task is to derive the EM update equations. Your final E and M step updates should
consist only of addition/subtraction/multiplication/division/log/exp/sqrt of scalars; and
addition/subtraction/multiplication/inverse/determinant of matrices. For simplicity, you
need to treat only {µp, σ2

p; p = 1 . . . P} and {νr, τ2r ; r = 1 . . . R} as parameters. I.e. treat

σ2 (the conditional variance of x(pr) given y(pr) and z(pr)) as a fixed, known constant.

(a) In this part, we will derive the E-step:

(i) The joint distribution p(y(pr), z(pr), x(pr)) has the form of a multivariate Gaussian
density. Find its associated mean vector and covariance matrix in terms of the pa-
rameters µp, σ

2
p, νr, τ

2
r , and σ2.

[Hint: Recognize that x(pr) can be written as x(pr) = y(pr) + z(pr) + ε(pr), where
ε(pr) ∼ N (0, σ2) is independent Gaussian noise.]

(ii) Derive an expression for Qpr(y
(pr), z(pr)) = p(y(pr), z(pr)|x(pr)) (E-step), using the

rules for conditioning on subsets of jointly Gaussian random variables (see the notes

CS229 Problem Set #3 6

on Factor Analysis).

(b) Derive the M-step updates to the parameters {µp, νr, σ2
p, τ

2
r }. [Hint: It may help to

express the lower bound on the likelihood in terms of an expectation with respect to
(y(pr), z(pr)) drawn from a distribution with density Qpr(y

(pr), z(pr)).]

Remark. In a recent machine learning conference, John Platt (whose SMO algorithm
you’ve seen) implemented a method quite similar to this one to estimate the papers’ true
scores µp. (There, the problem was a bit more complicated because not all reviewers
reviewed every paper, but the essential ideas are the same.) Because the model tried to
estimate and correct for reviewers’ biases νr, its estimates of µp were significantly more
useful for making accept/reject decisions than the reviewers’ raw scores for a paper.

CS229 Problem Set #3 7

4. [15 points] KL divergence and Maximum Likelihood

The Kullback-Leibler (KL) divergence between two discrete-valued distributions P (X), Q(X)
is defined as follows:1

KL(P‖Q) =
∑
x

P (x) log
P (x)

Q(x)

For notational convenience, we assume P (x) > 0,∀x. (Otherwise, one standard thing to do
is to adopt the convention that “0 log 0 = 0.”) Sometimes, we also write the KL divergence
as KL(P ||Q) = KL(P (X)||Q(X)).

The KL divergence is an assymmetric measure of the distance between 2 probability dis-
tributions. In this problem we will prove some basic properties of KL divergence, and
work out a relationship between minimizing KL divergence and the maximum likelihood
estimation that we’re familiar with.

(a) [5 points] Nonnegativity. Prove the following:

∀P,Q KL(P‖Q) ≥ 0

and

KL(P‖Q) = 0 if and only if P = Q.

[Hint: You may use the following result, called Jensen’s inequality. If f is a convex
function, and X is a random variable, then E[f(X)] ≥ f(E[X]). Moreover, if f is
strictly convex (f is convex if its Hessian satisfies H ≥ 0; it is strictly convex if H > 0;
for instance f(x) = − log x is strictly convex), then E[f(X)] = f(E[X]) implies that
X = E[X] with probability 1; i.e., X is actually a constant.]

(b) [5 points] Chain rule for KL divergence. The KL divergence between 2 conditional
distributions P (X|Y), Q(X|Y) is defined as follows:

KL(P (X|Y)‖Q(X|Y)) =
∑
y

P (y)

(∑
x

P (x|y) log
P (x|y)

Q(x|y)

)

This can be thought of as the expected KL divergence between the corresponding
conditional distributions on x (that is, between P (X|Y = y) and Q(X|Y = y)),
where the expectation is taken over the random y.

Prove the following chain rule for KL divergence:

KL(P (X,Y)‖Q(X,Y)) = KL(P (X)‖Q(X)) + KL(P (Y |X)‖Q(Y |X)).

(c) [5 points] KL and maximum likelihood.

Consider a density estimation problem, and suppose we are given a training set
{x(i); i = 1, . . . ,m}. Let the empirical distribution be P̂ (x) = 1

m

∑m
i=1 1{x(i) = x}.

1If P and Q are densities for continuous-valued random variables, then the sum is replaced by an integral,
and everything stated in this problem works fine as well. But for the sake of simplicity, in this problem we’ll just
work with this form of KL divergence for probability mass functions/discrete-valued distributions.

CS229 Problem Set #3 8

(P̂ is just the uniform distribution over the training set; i.e., sampling from the em-
pirical distribution is the same as picking a random example from the training set.)

Suppose we have some family of distributions Pθ parameterized by θ. (If you like,
think of Pθ(x) as an alternative notation for P (x; θ).) Prove that finding the maximum
likelihood estimate for the parameter θ is equivalent to finding Pθ with minimal KL
divergence from P̂ . I.e. prove:

arg min
θ

KL(P̂‖Pθ) = arg max
θ

m∑
i=1

logPθ(x
(i))

Remark. Consider the relationship between parts (b-c) and multi-variate Bernoulli
Naive Bayes parameter estimation. In the Naive Bayes model we assumed Pθ is of the
following form: Pθ(x, y) = p(y)

∏n
i=1 p(xi|y). By the chain rule for KL divergence, we

therefore have:

KL(P̂‖Pθ) = KL(P̂ (y)‖p(y)) +

n∑
i=1

KL(P̂ (xi|y)‖p(xi|y)).

This shows that finding the maximum likelihood/minimum KL-divergence estimate
of the parameters decomposes into 2n + 1 independent optimization problems: One
for the class priors p(y), and one for each of the conditional distributions p(xi|y)
for each feature xi given each of the two possible labels for y. Specifically, finding
the maximum likelihood estimates for each of these problems individually results in
also maximizing the likelihood of the joint distribution. (If you know what Bayesian
networks are, a similar remark applies to parameter estimation for them.)

CS229 Problem Set #3 9

5. [20 points] K-means for compression

In this problem, we will apply the K-means algorithm to lossy image compression, by
reducing the number of colors used in an image.

We will be using the following files:

• http://cs229.stanford.edu/ps/ps3/mandrill-small.tiff

• http://cs229.stanford.edu/ps/ps3/mandrill-large.tiff

The mandrill-large.tiff file contains a 512x512 image of a mandrill represented in 24-
bit color. This means that, for each of the 262144 pixels in the image, there are three 8-bit
numbers (each ranging from 0 to 255) that represent the red, green, and blue intensity
values for that pixel. The straightforward representation of this image therefore takes
about 262144×3 = 786432 bytes (a byte being 8 bits). To compress the image, we will use
K-means to reduce the image to k = 16 colors. More specifically, each pixel in the image is
considered a point in the three-dimensional (r, g, b)-space. To compress the image, we will
cluster these points in color-space into 16 clusters, and replace each pixel with the closest
cluster centroid.

Follow the instructions below. Be warned that some of these operations can take a while
(several minutes even on a fast computer)!2

(a) MATLAB/Octave: Start up MATLAB/Octave, and type

A = double(imread(’mandrill-large.tiff’)); to read in the image. Now, A is
a “three dimensional matrix,” and A(:,:,1), A(:,:,2) and A(:,:,3) are 512x512
arrays that respectively contain the red, green, and blue values for each pixel. Enter
imshow(uint8(round(A))); to display the image.

Python: Start up Python, and type

from matplotlib.image import imread; import matplotlib.pyplot as plt;

and run A = imread(’mandrill-large.tiff’) . Now, A is a “three dimensional
matrix,” and A[:,:,0], A[:,:,1] and A[:,:,2] are 512x512 arrays that respec-
tively contain the red, green, and blue values for each pixel. Enter plt.imshow(A);

plt.show() to display the image.

(b) Since the large image has 262144 pixels and would take a while to cluster, we will in-
stead run vector quantization on a smaller image. Repeat (a) with mandrill-small.tiff.
Treating each pixel’s (r, g, b) values as an element of R3, run K-means3 with 16 clus-
ters on the pixel data from this smaller image, iterating (preferably) to convergence,
but in no case for less than 30 iterations. For initialization, set each cluster centroid
to the (r, g, b)-values of a randomly chosen pixel in the image.

(c) Take the matrix A from mandrill-large.tiff, and replace each pixel’s (r, g, b) values
with the value of the closest cluster centroid. Display the new image, and compare it
visually to the original image. Hand in all your code and a copy of your compressed
image.

(d) If we represent the image with these reduced (16) colors, by (approximately) what
factor have we compressed the image?

2In order to use the imread and imshow commands in octave, you have to install the Image package from
octave-forge. This package and installation instructions are available at: http://octave.sourceforge.net

3Please implement K-means yourself, rather than using built-in functions.

