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CS 229, Autumn 2017
Problem Set #4: EM, DL & RL

Due Wednesday, Dec 6 at 11:59 pm on Gradescope.

Notes: (1) These questions require thought, but do not require long answers. Please be concise
where possible. (2) If you have a question about this homework, we encourage you to post your
question on our Piazza forum, at https://piazza.com/stanford/fall2017/cs229. (3) If you
missed the first lecture or are unfamiliar with the collaboration or honor code policy, please read
the policy on Handout #1 (available from the course website) before starting work. (4) For
problems that require programming, please include in your submission a printout of your code
(with comments) and any figures that you are asked to plot.

Remember to tag all question parts in Gradescope to avoid docked points. If you are skipping a
question, please include it on your PDF/photo, but leave the question blank and tag it appropri-
ately on Gradescope. This includes extra credit problems. If you are scanning your document by
cellphone, please see https://gradescope.com/help#help-center-item-student-scanning

for suggested practices.
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1. [25 points] Neural Networks: MNIST image classification

In this problem, you will implement a simple neural network to classify grayscale images of
handwritten digits (0 - 9) from the MNIST dataset. The dataset contains 60,000 training
images and 10,000 testing images of handwritten digits, 0 - 9. Each image is 28×28 pixels
in size, and is generally represented as a flat vector of 784 numbers. It also includes labels
for each example, a number indicating the actual digit (0 - 9) handwritten in that image.
A sample of a few such images along with their labels are shown below.

You can download the data and starter code at http://cs229.stanford.edu/ps/ps4/q1.
The starter code splits the set of 60,000 training images and labels into a sets of 50,000
examples as the training set and 10,000 examples for dev set.

To start, you will implement a neural network with a single hidden layer and cross entropy
loss, and train it with the provided data set. Use the sigmoid function as activation for the
hidden layer, and softmax function for the output layer. Recall that for a single example
(x, y), the cross entropy loss is:

CE(y, ŷ) = −
K∑
k=1

yk log ŷk,

where ŷ ∈ RK is the vector of softmax outputs from the model for the training example
x, and y ∈ RK is the ground-truth vector for the training example x such that y =
[0, ..., 0, 1, 0, ..., 0]> contains a single 1 at the position of the correct class (also called a
“one-hot” representation).

For m training examples, we average the cross entropy loss over the m examples.

J(W [1],W [2], b[1], b[2]) =
1

m

m∑
i=1

CE(y(i), ŷ(i)) = − 1

m

m∑
i=1

K∑
k=1

y
(i)
k log ŷ

(i)
k .

The starter code already converts labels into one hot representations for you.

Instead of batch gradient descent or stochastic gradient descent, common practice is to
use mini-batch gradient descent for deep learning tasks. In this case, the cost function is
defined as follows:
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JMB =
1

B

B∑
i=1

CE(y(i), ŷ(i))

where B is the batch size, i.e. the number of training example in each mini-batch.

(a) [15 points]

Implement both forward-propagation and back-propagation for the above loss func-
tion. Initialize the weights of the network by sampling values from a standard normal
distribution. Initialize the bias/intercept term to 0. Set the number of hidden units to
be 300, and learning rate to be 5. Set B = 1, 000 (mini batch size). This means that
we train with 1,000 examples in each iteration. Therefore, for each epoch, we need 50
iterations to cover the entire training data. The images are pre-shuffled. So you don’t
need to randomly sample the data, and can just create mini-batches sequentially.

Train the model with mini-batch gradient descent as described above. Run the train-
ing for 30 epochs. At the end of each epoch, calculate the value of loss function av-
eraged over the entire training set, and plot it (y-axis) against the number of epochs
(x-axis). In the same image, plot the value of the loss function averaged over the dev
set, and plot it against the number of epochs.

Similarly, in a new image, plot the accuracy (on y-axis) over the training set, measured
as the fraction of correctly classified examples, versus the number of epochs (x-axis).
In the same image, also plot the accuracy over the dev set versus number of epochs.

Submit both the plots along with the code.

Also, at the end of 30 epochs, save the learnt parameters (i.e all the weights and
biases) into a file, so that next time you can directly initialize the parameters with
these values from the file, rather than re-training all over. You do NOT need to
submit these parameters.

(b) [7 points] Now add a regularization term to your cross entropy loss. The loss function
will become

JMB =

(
1

B

B∑
i=1

CE(y(i), ŷ(i))

)
+ λ

(
||W [1]||2 + ||W [2]||2

)
Be careful not to regularize the bias/intercept term (remember why? from PS2?). Set
λ to be 0.0001. Implement the regularized version and plot the same figures as part
(a). Be careful NOT to include the regularization term to calculate the loss value
(regularization should only be used to calculate the gradients). Submit the two new
plots obtained.

Compare the plots obtained from the regularized version with the plots obtained from
the non-regularized version, and summarize your observations in a couple of sentences.

As in the previous part, save the learnt parameters (weights and biases) into a different
file so that we can initialize from them next time.

(c) [3 points] All this while you should have stayed away from the test data completely.
Now that you have convinced yourself that the model is working as expected (i.e, the
observations you made in the previous part matches what you learnt in class about
regularization), it is finally time to measure the model performance on the test set.
Once we measure the test set performance, we report it whatever value it may be,
and NOT go back and refine the model any further.



CS229 Problem Set #4 4

Initialize your model from the parameters saved in part (a) (i.e, the non-regularized
model), and evaluate the model performance on the test data. Repeat this using the
parameters saved in part (b) (i.e, the regularized model).

Report your test accuracy for both regularized model and non-regularized model.

Hint: Be sure to vectorize your code as much as possible! Training can be very slow
otherwise.
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2. [15 points] EM Convergence

We again consider the problem of estimating the parameters of a model in the case of
partially observed data. Let x(i) indicate an observed example, and z(i) indicate the
corresponding latent variable associated with that observed example. Let θ indicate the
parameter of the joint model p(x, z; θ).

Let us denote the log-marginal density of the observed data as

`(θ) =

m∑
i=1

log p(x(i); θ).

We saw in class that the EM algorithm monotonically improves `(θ) by iteratively arriving
at better estimates of θ, ensuring that

`(θ(t+1)) ≥ `(θ(t))

where t indicates the iteration number. It does so by constructing a lower bound of `(θ) in
each iteration (such that the bound is tight at the current estimate of θ), then maximizing
this lower bound with respect to θ, and use the resulting θ as the updated estimate. The
algorithm stops when we obtain parameter θ∗ such that an M-step from that point results
in the same parameter θ∗.

This algorithm will always converge. The reason is that every new θ monotonically in-
creases `(θ), and ` is a bounded function. So the algorithm cannot go on for ever.

However, it was not shown that when the algorithm converges, we would have completely
maximized `(θ). This is a subtle point. Maybe the EM iterations converged to a value
of θ∗, but for some reason that θ∗ was not a local maxima of `(θ)? Remember, we never
directly maximized `(θ) and therefore do not have a trivial guarantee that θ∗ is at a local
maxima of `(θ)!

Show that when the EM algorithm converges, we would have indeed maximized (locally)
the log-marginal of the data, by showing that ∇θ`(θ) = 0 at the converged value of θ∗.

Hint: Be careful and clear about using θ and θ∗ in the right places, especially while taking
gradients. Remember, while θ represents a variable, θ∗ is a constant.

Hint: The following observation can be helpful:

∇θf(θ) |θ=θ∗
f(θ∗)

= ∇θ[log f(θ)]θ=θ∗

Hint: Start from the fact that when EM converges, the M-step would have reached a
fixed point (i.e performing M-step from the converged parameter θ∗ will return the same
parameter θ∗)
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3. [10 points] PCA

In class, we showed that PCA finds the “variance maximizing” directions onto which to
project the data. In this problem, we find another interpretation of PCA.

Suppose we are given a set of points {x(1), . . . , x(m)}. Let us assume that we have as usual
preprocessed the data to have zero-mean and unit variance in each coordinate. For a given
unit-length vector u, let fu(x) be the projection of point x onto the direction given by u.
I.e., if V = {αu : α ∈ R}, then

fu(x) = arg min
v∈V
||x− v||2.

Show that the unit-length vector u that minimizes the mean squared error between pro-
jected points and original points corresponds to the first principal component for the data.
I.e., show that

arg min
u:uTu=1

m∑
i=1

‖x(i) − fu(x(i))‖22 .

gives the first principal component.

Remark. If we are asked to find a k-dimensional subspace onto which to project the
data so as to minimize the sum of squares distance between the original data and their
projections, then we should choose the k-dimensional subspace spanned by the first k
principal components of the data. This problem shows that this result holds for the case
of k = 1.



CS229 Problem Set #4 7

4. [10 points] Independent components analysis

For this question you will implement the Bell and Sejnowski ICA algorithm, as covered in
class. The files you’ll need for this problem are in http://cs229.stanford.edu/ps/ps4/

q4. The file mix.dat contains a matrix with 5 columns, with each column corresponding
to one of the mixed signals xi. The file bellsej.m (and bellsej.py) contains starter code
for your implementation.

Implement and run ICA, and report what was the W matrix you found. Please make your
code clean and very concise, and use symbol conventions as in class. To make sure your
code is correct, you should listen to the resulting unmixed sources. (Some overlap in the
sources may be present, but the different sources should be pretty clearly separated.)

Note: In our implementation, we annealed the learning rate α (slowly decreased it over
time) to speed up learning. We briefly describe in bellsej.m (and bellsej.py) what we
did, but you should feel free to play with things to make it work best for you. In addition
to using the variable learning rate to speed up convergence, one thing that we also tried
was choosing a random permutation of the training data, and running stochastic gradient
ascent visiting the training data in that order (each of the specified learning rates was then
used for one full pass through the data); this is something that you could try, too.
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5. [15 points] Markov decision processes

Consider an MDP with finite state and action spaces, and discount factor γ < 1. Let B be
the Bellman update operator with V a vector of values for each state. I.e., if V ′ = B(V ),
then

V ′(s) = R(s) + γmax
a∈A

∑
s′∈S

Psa(s′)V (s′).

(a) [10 points] Prove that, for any two finite-valued vectors V1, V2, it holds true that

||B(V1)−B(V2)||∞ ≤ γ||V1 − V2||∞.

where
||V ||∞ = max

s∈S
|V (s)|.

(This shows that the Bellman update operator is a “γ-contraction in the max-norm.”)

(b) [5 points] We say that V is a fixed point of B if B(V ) = V . Using the fact that
the Bellman update operator is a γ-contraction in the max-norm, prove that B has at
most one fixed point—i.e., that there is at most one solution to the Bellman equations.
You may assume that B has at least one fixed point.

Remark: The result you proved in part(a) implies that value iteration converges geomet-
rically to the optimal value function V ∗. That is, after k iterations, the distance between
V and V ∗ is at most γk.



CS229 Problem Set #4 9

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

6. [25 points] Reinforcement Learning: The inverted pendulum

In this problem, you will apply reinforcement learning to automatically design a policy for
a difficult control task, without ever using any explicit knowledge of the dynamics of the
underlying system.

The problem we will consider is the inverted pendulum or the pole-balancing problem.1

Consider the figure shown. A thin pole is connected via a free hinge to a cart, which can
move laterally on a smooth table surface. The controller is said to have failed if either the
angle of the pole deviates by more than a certain amount from the vertical position (i.e.,
if the pole falls over), or if the cart’s position goes out of bounds (i.e., if it falls off the
end of the table). Our objective is to develop a controller to balance the pole with these
constraints, by appropriately having the cart accelerate left and right.

We have written a simple Matlab simulator for this problem. The simulation proceeds
in discrete time cycles (steps). The state of the cart and pole at any time is completely
characterized by 4 parameters: the cart position x, the cart velocity ẋ, the angle of the
pole θ measured as its deviation from the vertical position, and the angular velocity of the
pole θ̇. Since it’d be simpler to consider reinforcement learning in a discrete state space, we
have approximated the state space by a discretization that maps a state vector (x, ẋ, θ, θ̇)
into a number from 1 to NUM STATES. Your learning algorithm will need to deal only with
this discretized representation of the states.

At every time step, the controller must choose one of two actions - push (accelerate) the cart
right, or push the cart left. (To keep the problem simple, there is no do-nothing action.)
These are represented as actions 1 and 2 respectively in the code. When the action choice
is made, the simulator updates the state parameters according to the underlying dynamics,
and provides a new discretized state.

We will assume that the reward R(s) is a function of the current state only. When the
pole angle goes beyond a certain limit or when the cart goes too far out, a negative reward
is given, and the system is reinitialized randomly. At all other times, the reward is zero.
Your program must learn to balance the pole using only the state transitions and rewards
observed.

The files for this problem are in http://cs229.stanford.edu/ps/ps4/q6. Most of the the
code has already been written for you, and you need to make changes only to control.m

(or control.py) in the places specified. This file can be run in Matlab to show a display

1The dynamics are adapted from http://www-anw.cs.umass.edu/rlr/domains.html
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and to plot a learning curve at the end. Read the comments at the top of the file for more
details on the working of the simulation.2

(a) To solve the inverted pendulum problem, you will estimate a model (i.e., transition
probabilities and rewards) for the underlying MDP, solve Bellman’s equations for this
estimated MDP to obtain a value function, and act greedily with respect to this value
function.

Briefly, you will maintain a current model of the MDP and a current estimate of the
value function. Initially, each state has estimated reward zero, and the estimated
transition probabilities are uniform (equally likely to end up in any other state).

During the simulation, you must choose actions at each time step according to some
current policy. As the program goes along taking actions, it will gather observations on
transitions and rewards, which it can use to get a better estimate of the MDP model.
Since it is inefficient to update the whole estimated MDP after every observation, we
will store the state transitions and reward observations each time, and update the
model and value function/policy only periodically. Thus, you must maintain counts
of the total number of times the transition from state si to state sj using action a
has been observed (similarly for the rewards). Note that the rewards at any state
are deterministic, but the state transitions are not because of the discretization of
the state space (several different but close configurations may map onto the same
discretized state).

Each time a failure occurs (such as if the pole falls over), you should re-estimate the
transition probabilities and rewards as the average of the observed values (if any).
Your program must then use value iteration to solve Bellman’s equations on the
estimated MDP, to get the value function and new optimal policy for the new model.
For value iteration, use a convergence criterion that checks if the maximum absolute
change in the value function on an iteration exceeds some specified tolerance.

Finally, assume that the whole learning procedure has converged once several consecu-
tive attempts (defined by the parameter NO LEARNING THRESHOLD) to solve Bellman’s
equation all converge in the first iteration. Intuitively, this indicates that the esti-
mated model has stopped changing significantly.

The code outline for this problem is already in control.m (and control.py), and
you need to write code fragments only at the places specified in the file. There are
several details (convergence criteria etc.) that are also explained inside the code. Use
a discount factor of γ = 0.995.

Implement the reinforcement learning algorithm as specified, and run it. How many
trials (how many times did the pole fall over or the cart fall off) did it take before the
algorithm converged?

(b) Plot a learning curve showing the number of time-steps for which the pole was bal-
anced on each trial. Matlab/Octave users just need to execute plot learning curve.m

after control.m to get this plot. Python starter code already includes the code to
plot.

2Note that the routine for drawing the cart does not work in Octave.


